Midterm Exam Solutions 2019 (Solutions of Questions not Discussed in Class)

Exercise 1

- 1. MC = 4 + 4y, AVC = 4 + 2y, AFC = 2/y.
- 2. Threshold for short-run shutdown: the price is below min MC = 4. (Note: you should state explicitly that the threshold is a price.)
- 3. Threshold for long-run shutdown: the price is below $\min AC = 8$. One gets $\min AC$ by solving AC(y) = MC(y) for y (which yields y = 1) and plugging this into AC: AC(y = 1) = 8.
- 4. see figure:

- 5. see S in figure above
- 6.

$$S(p) = \begin{cases} 0 & \text{if } p < 8\\ 9p - 36 & \text{if } p \ge 8 \end{cases}$$

Exercise 2

1.
$$p = 12, q = 6$$

2.
$$CS = 9$$
, $PS = 18$, see figure:

- 3. there is no deadweight loss, since the market equilibrium is efficient
- 4. quantity: q=4, price: 13 (This can be computed by solving $Q_d(p)=4$ for p.), see figure:

5. CS = 4, PS = 20, see figure:

6. deadweight loss: (9+18)-(4+24)=3

Exercise 3

1.
$$AR(Q) = P(Q) = 18 - Q$$
, $MR(Q) = 18 - 2Q$, $MC(Q) = 2Q + 6$

2.
$$Q_m = 3$$
, $P_m = 15$ (obtained by solving $MC(Q_m) = MR(Q_m)$)

3.
$$Q_e = 4$$
, $P_e = 14$ (obtained by solving $MC(Q_e) = P(Q_e)$)

4. deadweight loss: 1.5, see figure:

5. the produced quantity is 3 like in the previous question, so the deadweight loss is also 1.5, see figure:

