
Python for Finance

Control Flow, data structures and first
application (part 2)

Andras Niedermayer

Outline

1 Control Flow

2 Modules

3 Data types and structures. Working with arrays and matrices.

4 Numpy functions

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 2/34

Functions
• definition with parameters

In [1]: def hello(name):

... : print ’Hello ’ + name

• usage:

In [1]: hello(’Alice’)

In [2]: hello(’Bob’)

• even better: document your code with a docstring

In [1]: def hello(name):

... : """

... : A function that says hello

... : to ‘name ‘

... : """

... : print ’Hello ’ + name

In [2]: help(hello)
Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 3/34

Functions

• return values

def get_answers(answer_number):

if answer_number == 1:

return ’You are the first.’

elif answer_number == 2:

return ’Twice as good.’

else:

return ’Something else than one’\

’ or two’

• usage:

In [1]: print get_answer (2)

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 4/34

Functions

• Or pick a random one:

import random

fortune = get_answer(random.randint (1,9))

print fortune

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 5/34

Variable Scope

• one cannot use variables outside of their scope

def spam ():

eggs = 31337

print(str(eggs))

spam()

print(eggs)

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 6/34

Variable Scope

• This also true for calls to other functions:

def spam ():

eggs = 31337

bacon ()

print(eggs)

def bacon ():

ham = 101

eggs = 0

spam()

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 7/34

Variable Scope

• In constrast to this, one can use global variables in a funtion:

def spam ():

print(eggs)

eggs = 31337

spam()

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 8/34

Functions

• The following is bad style, but feasible:

def spam ():

eggs = ’spam local’

print(eggs)

def bacon ():

eggs = ’bacon local’

print(eggs)

spam()

print(eggs)

eggs = ’global ’

bacon ()

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 9/34

Variable Scope

• Usage of the ‘global’ keyword

def spam ():

global eggs

eggs = spam

eggs = ’global ’

spam()

print(eggs)

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 10/34

Our Own Module

• Definition in Python documentation:
“A module is a file containing Python definitions and statements.
The file name is the module name with the suffix .py appended.”

• A module is essentially a file that one imports. The file contains
the functions we can call.

• Here is an example of what we may try to achieve:

In [1]: import sequences

In [2]: # Import the file sequences.py

In [3]: dir(sequences)

Out [3]: [’__name__ ’, ’fib’, ’fib2’]

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 11/34

Outline

1 Control Flow

2 Modules

3 Data types and structures. Working with arrays and matrices.

4 Numpy functions

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 12/34

Our Own Module
• Let us create our module “sequences” and save it as

“sequences.py”

"""A module with different sequences """

def fib(n):

"""

prints the Fibonacci sequence from 1 to n

"""

a, b = 0, 1

while b < n:

print b,

a, b = b, a+b

print

def fib2(n):

"""

returns the Fibonacci sequence until n

"""

res = []

a, b = 0, 1

while b < n:

res.append(b)

a, b = b, a+b

return res
Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 13/34

Our Own Module

• using the module

In [1]: import sequences

In [2]: sequences.__name__

Out [2]: ’sequences ’

In [3]: sequences.fib (1000)

1 1 2 3 5 8 13 21 34 55 144 233 377 610 987

In [4]: help(sequences)

In [5]: help(sequences.fib)

• to automatically reload changes:

In [1]: %load_ext autoreload

In [2]: %autoreload 2

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 14/34

Our Own Module

• making the module executable
• because you want to test the modul
• because you want to run your module without starting the

Python interpreter
• add the following to the end of the sequences.py file:

if __name__ == "__main__":

import sys

Usage: python sequences.py <ENTER >

fib(int(sys.argv [1]))

• start the Anaconda prompt, change to the folder in which you
saved sequences.py, e.g. if the folder name is “C:\some\path”,
type
cd ‘‘C:\some\path’’
• then type
python sequences.py 1000

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 15/34

Excercises

14 Create a program that picks a random number between 1 and 2.
The player has to guess the number. The player has 6 attempts
to guess. After each guess, tell the player whether his number
was too high or too low.

15 “Solve” the Syracuse problem numerically: Take an integer
n ≥ 1, repeat the following operation:
• if the number is even then divide it by two
• if the number is odd then multiply it by 3 and add 1

Does the sequence always reach 1?
(“Solve” is in quotation marks, because proving this result in
general is an unsolved problem so far, see
https://en.wikipedia.org/wiki/Collatz_conjecture.
However, we can calculate the solution of the problem for
different numerical examples.)

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 16/34

https://en.wikipedia.org/wiki/Collatz_conjecture

Excercise 14

• Guessing game guess.py:

"""

Picks a random number and lets

the player guess

"""

imports

ask six times

was the number too high?

was the number too low?

if neither , exit

if success ...

or if failure ...

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 17/34

Excercise 14
• Guessing game guess.py

"""

Picks a random number and lets

the player guess

"""

import random

secret = random.randint (1,20)

print("I thought of a number between 1 and 20.")

Ask the player six times

for number_guess in range (1,7):

print ’What number?’

guess = int(raw_input ()) # for Python 3: input ()

number was too low

if guess < secret:

print ’Your guess is too low.’

number was too high

elif guess > secret:

print ’Your guess is too high.’

else:

break # otherwise exit

if guess == secret: # if success

print ’Well played.’

else: # or if failure ...

print ’No luck!’

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 18/34

Exercise 15
• define following function, run with different values of

starting value and number steps

def syracuse(starting_value , number_steps):

u = starting_value

print u,

for n in range(number_steps):

if u % 2 == 0:

u = u / 2

else:

u = 3 * u + 1

print u,

if u == 1:

print ’Converged to 1 after {}’\

’ steps!’.format(n)

return

print ’Did not converge in {} steps!’\

.format(number_steps)

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 19/34

Outline

1 Control Flow

2 Modules

3 Data types and structures. Working with arrays and matrices.

4 Numpy functions

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 20/34

Data types in Python

Type Name Example Notes

Integer int a=10 arbitrarily large; a/4=?
Floats float b=0.35 precision issues; b+0.1=?
Strings string c=”it is a string”

• Interesting methods for strings: c.capitalize(), c.split(),
c.replace(a,b)...

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 21/34

Data structures

tuple

Simple collection of arbitrary objects. Limited methods.

t=(1, 2.5, "data") # t=1, 2.5, "data"

Note that indexing starts at zero: t[0]=1.
Two methods:

1 Count: t.count("data")=1

2 Index: t.index(2.5)=1

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 22/34

Data structures

list

A collection of arbitrary objects; many methods available.

l=[1, 2.5, "data"]

Can convert tuples into lists: l=list(t)? Multiple methods:

1 Append (even another list):
l.append([4,3])=[1,2.5,"data",[4,3]]

2 Insert before index:
l.insert(1,’insert’)=[1,’insert’, 2.5,"data",[4,3]]

3 Remove first occurence:
l.remove(2.5)=[1,’insert’,"data",[4,3]]

4 ”Slice”: l[1:3]=[’insert’,"data"]

5 Sort data: l.sort(), or non-mutating version l2=sorted(l)

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 23/34

Data structures

• Excercise: Play hangman
• rules

• The computer chooses a word.
• In each round the player chooses a letter
• If the letter is in the word, it appears.
• If not, then the counter increases and the game appraoches its

end.

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 24/34

Solution

def play_hangman(word , n):

guess = len(word)*[’_’]

while n>0:

letters = raw_input(’{}. guesses left: ’\

.format(n))

letter = letters [0]

if letter in word:

for i in range(len(word)):

if word[i] == letter:

guess[i] = letter

print ’’.join(guess)

if ’_’ not in guess:

print ’success!’

return

else:

n -= 1

print ’wrong. {} guesses left.’\

.format(n)

print ’failure!’

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 25/34

Data structures

dict

Dictionaries with key-value stores. Unordered and un-sortable. Maps
(generally) strings into strings or numbers.

d={’Last’: ’Doe’, ’First ’:’John’, ’Country ’:’UK’}

Multiple methods:

1 d.keys()=[’Last’, ’First’, ’Country’]

2 d.values()=[’Doe’, ’John’, ’England’]

3 Mapping in a dictionary: d[’Last’]=’Doe’.

4 Setting an item: d[’Country’]=US

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 26/34

Data structures

set

Mathematical sets: unordered collections of objects, repeated only
once.

s1=set([’a’,’b’,’c’,’d’])

s2=set([’e’,’b’,’c’,’f’])

Multiple methods:

1 s1.union(s2)={’a’,’b’,’c’,’d’,’e’,’f’}
2 s1.intersection(s2)={’b’,’c’}
3 s1.difference(s2)={’a’,’d’}
4 s1.symmetric difference(s2)={’a’,’d’,’e’,’f’}

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 27/34

Working with matrices: List arrays

v=[0.5 , 0.75, 1.0, 1.5, 2.0] # vector

m=[v,v,v] # a 3-by -3 matrix

m=[[0.5, 0.75, 1.0, 1.5, 2.0]

[0.5, 0.75, 1.0, 1.5, 2.0]

[0.5, 0.75, 1.0, 1.5, 2.0]]

1 Easy to select rows or single elements.
Example: m[1] is second row, m[1][0] first element of the second
row.

2 Not easy to select columns! (a ”row” is the primary element of
the list matrix)

3 Works by reference pointers – changes in v are copied
everywhere in m.
Example: v [0] = −2. Try out m =?

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 28/34

Numpy arrays

We will import the numerical Python library: numpy.

import numpy as np

v1=np.array ([0.5, 0.75, 1.0, 1.5, 2.0]) #ndarray.

Vector methods for numpy.ndarray:

1 Sum of elements: v1.sum()=5.75.

2 Standard deviation: v1.std()=0.53.

3 Cumulative sum:
v1.cumsum()=array([0.5, 1.25, 2.25, 3.75, 5.75])

4 Scalar multiplication, powers, square root...:
v1*2 = array([1, 1.5, 2.0, 3.0, 4.0])

v1**2 =array([0.25, 0.5625, 1., 2.25, 4.])

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 29/34

Matrix operations

m1=np.array([v1 , v1*2])

m1=np.array ([[0.5, 0.75, 1., 1.5, 2.],

[1., 1.5, 2., 3., 4.]])

1 Indexing is (row, column): m1[0, 2] is third element of first row.

2 Column sum: m1.sum(axis=0)=array([1.5, 2.25, 3.,

4.5, 6.])

Row sum: m1.sum(axis=1)=?

3 Cumulative sum:
v1.cumsum()=array([0.5, 1.25, 2.25, 3.75, 5.75])

4 Initializing a matrix:
• np.zeros((r,c,z), dtype=’f’, order=’C’) or
np.ones((r,c,z), dtype=’f’, order=’C’).

• Types (optional): i is integer, f is float, b is boolean....
• Order (optional): how to store elements in memory

’C’ is row-wise, ’F’ is column-wise.
Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 30/34

Matrix operations (more)

m1=np.array([v1 , v1*2])

m1=array ([[0.5 , 0.75, 1., 1.5, 2.],

[1., 1.5, 2., 3., 4.]])

1 Flattening:
m1.ravel()=array([0.5, 0.75, 1., 1.5, 2., 1., 1.5,

2., 3., 4.])

2 Matrix size: m1.shape=(2, 5)

3 Reshape:
m1.reshape(5,-1)=array([[0.5, 0.75], [1., 1.5],

[2., 1.], [1.5, 2.], [3., 4.]])

4 Vertical and horizontal stacking: vstack and hstack.

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 31/34

Vectorization

Advantages of vectorization:

1 compact code, easy to read and understand.

2 faster execution.

v20=np.array ([2,3,5])

v21=np.array ([0.5 ,0.6 ,0.2])

element -by-element sum

v20+v21=array ([2.5 , 3.6, 5.2])

broadcasting the scalar.

2*v20 +3= array([7, 9, 13])

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 32/34

Outline

1 Control Flow

2 Modules

3 Data types and structures. Working with arrays and matrices.

4 Numpy functions

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 33/34

Numpy functions

Documentation:
www.docs.scipy.org/doc/numpy/reference/routines.html

Name Description

np.dot(a, b) Dot product of a and b
np.linalg .det(a) Determinant of array a
np.linalg .solve(a, b) Solve linear system ax = b
np.linalg .eig(a) Eigenvalues of matrix a
np.sin(x), np.cos(x).. Trigonometric functions
np.exp(x), np.log(x),
np.power(x1, x2), np.sqrt(x) Arithmetic, exponents, logarithms
np.median(a), np.mean(a)
np.std(a), np.corrcoef (a, b) Summary stats of an array

Wednesday, January 10, 2018 Python for Finance - Lecture 3
Andras Niedermayer - Université Paris-Dauphine 34/34

www.docs.scipy.org/doc/numpy/reference/routines.html

	Control Flow
	Modules
	Data types and structures. Working with arrays and matrices.

